Volume effects in the Keller-Segel model: energy estimates preventing blow-up
نویسندگان
چکیده
We obtain a priori estimates for the classical chemotaxis model of Patlak, Keller and Segel when a nonlinear diffusion or a nonlinear chemosensitivity is considered accounting for the finite size of the cells. We will show how entropy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solutions.
منابع مشابه
Cross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model
Abstract. A (Patlak-) Keller-Segel model in two space dimensions with an additional crossdiffusion term in the equation for the chemical signal is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical substance. This allows one to prove, for arbitrarily small cross diffusion, the global existence of ...
متن کاملNew Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model
We develop a family of new interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. This model is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. It has been recently shown that the convective part of this system is of a mixed hyperbol...
متن کاملA finite volume scheme for the Patlak-Keller-Segel chemotaxis model
A finite volume method is presented to discretize the Patlak-Keller-Segel (PKS) model for chemosensitive movements. On the one hand, we prove existence and uniqueness of a numerical solution to the proposed scheme. On the other hand, we give a priori estimates and establish a threshold on the initial mass, for which we show that the numerical approximation convergences to the solution to the PK...
متن کاملExact Criterion for Global Existence and Blow Up to a Degenerate Keller-Segel System
A degenerate Keller-Segel system with diffusion exponent m with 2n n+2 < m < 2 − 2 n in multi dimension is studied. An exact criterion for global existence and blow up of solution is obtained. The estimates on L 2n n+2 norm of the solution play important roles in our analysis. These estimates are closely related to the optimal constant in the HardyLittlewoodSobolev inequality. In the case of in...
متن کاملGlobal Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion
The L-critical parabolic-elliptic Patlak-Keller-Segel system is a classical model of chemotactic aggregation in micro-organisms well-known to have critical mass phenomena [10, 8]. In this paper we study this critical mass phenomenon in the context of Patlak-Keller-Segel models with spatially varying diffusivity and decay rate of the chemo-attractant. The primary tool for the proof of global exi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005